Inhabitance of Existential Types is Decidable in Negation-Product Fragment
نویسندگان
چکیده
This paper shows the inhabitance in the lambda calculus with negation, product, and existential types is decidable. This is proved by showing existential quantification can be eliminated and reducing the problem to provability in intuitionistic propositional logic. By the same technique, this paper also shows existential quantification followed by negation can be replaced by a specific witness in both that system and the system with implication and bottom.
منابع مشابه
Type Checking and Inference for Polymorphic and Existential Types
This paper proves undecidability of type checking and type inference problems in some variants of typed lambda calculi with polymorphic and existential types. First, type inference in the domain-free polymorphic lambda calculus is proved to be undecidable, and then it is proved that type inference is undecidable in the negation, conjunction, and existence fragment of the domain-free typed lambd...
متن کاملVerification of Gap-Order Constraint Abstractions of Counter Systems
We investigate verification problems for gap-order constraint systems (GCS), an (infinitely-branching) abstract model of counter machines, in which constraints (over Z) between the variables of the source state and the target state of a transition are gap-order constraints (GC) [21]. GCS extend monotonicity constraint systems [3], integral relation automata [8], and constraint automata in [11]....
متن کاملType Checking and Inference Are Equivalent in Lambda Calculi with Existential Types
This paper shows that type-checking and type-inference problems are equivalent in domain-free lambda calculi with existential types, that is, type-checking problem is Turing reducible to typeinference problem and vice versa. In this paper, the equivalence is proved for two variants of domain-free lambda calculi with existential types: one is an implication and existence fragment, and the other ...
متن کاملOne quantifier alternation in first-order logic with modular predicates
Adding modular predicates yields a generalization of first-order logic FO over words. The expressive power of FO[<,MOD] with order comparison x < y and predicates for x ≡ i mod n has been investigated by Barrington, Compton, Straubing and Thérien. The study of FO[<,MOD]fragments was initiated by Chaubard, Pin and Straubing. More recently, Dartois and Paperman showed that definability in the two...
متن کاملOne-dimensional Fragment of First-order Logic
We introduce a novel decidable fragment of first-order logic. The fragment is one-dimensional in the sense that quantification is limited to applications of blocks of existential (universal) quantifiers such that at most one variable remains free in the quantified formula. The fragment is closed under Boolean operations, but additional restrictions (called uniformity conditions) apply to combin...
متن کامل